

Pest Control in Crops Grown in Northwestern New Mexico, 2011

Annual Data Report 100-2011

Y Richard N. Arnold, Michael K. O'Neill, Daniel Smeal, and Kevin Lombard¹

Cooperative Extension Service • College of Agricultural, Consumer and Environmental Sciences

Table of Contents	– Page -
Introduction	1
Monsanto, Broadleaf weed control in	2
spring-seeded Roundup Ready alfalfa	
BASF, Broadleaf weed control in field corn with	3
preemergence followed by sequential	
postemergence herbicides	
Bayer CropScience, Broadleaf weed control in	3
field corn with either preemergence or	
postemergence herbicides	
Bayer CropScience, Broadleaf weed control in	4
field corn with preemergence followed by	
sequential postemergence herbicides	
DuPont Crop Protection, Broadleaf weed control in .	5
field corn with preemergence followed by	
sequential postemergence herbicides	
Bayer CropScience, Broadleaf weed control in	6
grain sorghum with preemergence followed by	
sequential postemergence herbicides	
Dow AgroSciences, Jim Hill mustard control in	6
winter wheat	
DuPont Crop Protection, Cool-season native and	7
non-native grass response to MAT 28	

INTRODUCTION

Weeds cause more total crop losses than any other agricultural pest (Arnold, 1981–2008; Hall et al., 1995; Currie, 2004; Lorenzi and Jeffery, 1987). Weeds reduce crop yields and quality, harbor insects and plant diseases, and cause irrigation and harvesting problems (Chandler et al., 1984; Lorenzi and Jeffery, 1987; Currie, 2005; Massinga et al., 1999, 2003). As a result, weeds reduce the total value of agricultural products in the United States by 10 to 15% (Lorenzi and Jeffery, 1987). Estimated average losses during 1975 to 1979 in the potential production of field corn, potatoes, and onion ranged from 7 to 16% in the Mountain States Region, which includes New Mexico (Chandler et al., 1984). San Juan County ranks first in potato production, fourth in alfalfa production, and second in corn production among all New Mexico counties (New Mexico Agricultural Statistics, 2007).

An estimated 90% of all tillage operations are for weed control (J.G. Foster, personal communications, 2005–2007). Herbicides can reduce the number of required tillage operations and can be used where cultivation is not possible, such as within crop rows or in solid-seeded crops. With increasing fuel and labor costs, herbicides are often more economical than other methods of weed control.

Many herbicides are approved for use on crops grown on medium- and fine-textured, high-organic soils. Little information is available, however, regarding their effectiveness and safety on low-organic, coarse-textured soils that are common to northwestern New Mexico.

The Environmental Protection Agency (EPA) has become more stringent with regard to research data required for pesticide approval. Thus, it has become critical that state Agricultural Science Centers work closely with commercial companies developing new pesticides in order to obtain the research data required by the EPA. This cooperation will benefit the agricultural industry of the state and assist EPA pesticide registration.

Before 1980, the use of herbicides in northwestern New Mexico was limited. Most growers were still using 2,4-D in corn for broadleaf weed control, while annual grasses were left in check. In alfalfa, burning winter annual mustard and downy brome with propane was not uncommon. An herbicide field-screening program has provided essential information on the activity of new and old herbicides on crops grown in northwestern New Mexico (Arnold, 1981–2008).

¹Respectively, College Professor, Department of Entomology, Plant Pathology and Weed Science, and Superintendent, Agricultural Science Center at Farmington; Professor, Department of Plant and Environmental Sciences; College Professor, Department of Plant and Environmental Sciences; and Assistant Professor, Agricultural Science Center at Farmington, all of New Mexico State University.

To find more resources for your business, home, or family, visit the College of Agricultural, Consumer and Environmental Sciences on the World Wide Web at aces.nmsu.edu

As new land on the Navajo Indian Irrigation Project comes under cultivation, weed and insect problems are varied and may change with each successive crop. It is only through continued research that the demand for reliable information on the use of pesticides in northwestern New Mexico can be met.

I wish to express my sincere appreciation to the following companies for providing technical assistance, products, and/or financial assistance: Bayer Crop-Science, BASF, E.I. DuPont, Gowan, BLM/FFO, FMC, Monsanto, Dow AgroSciences, Navajo Agricultural Products Industry, Pioneer Hi-Bred, Syngenta Crop Protection, and Southwest Seed.

PEST CONTROL GRANT FUND

Pest Control Management Objectives

Determine efficacy of registered and non-registered pesticides for control of weeds in agricultural crops grown in northwestern New Mexico.

Monsanto, Broadleaf Weed Control in Spring-Seeded Roundup Ready Alfalfa

Introduction

Seedling alfalfa requires effective broad-spectrum weed control for successful establishment; however, few herbicides are registered for postemergence broadleaf weed control. Pursuit, Raptor, and recently Roundup applied to Roundup Ready alfalfa have been registered for broadleaf weed control in seedling alfalfa. Field trials were conducted to evaluate broadleaf weed control of Roundup applied alone or in combination with other selected herbicides.

Objectives

- Determine efficacy of Roundup applied alone or in combination for control of broadleaf weeds in Roundup Ready spring-seeded alfalfa.
- Determine alfalfa yield and tolerance to applied selected herbicides.

Materials and methods

A field experiment was conducted in 2011 at Farmington, NM, to evaluate the response of Roundup Ready alfalfa (DeKalb DKA41-18RR) and annual broadleaf weeds to postemergence applications of Roundup applied alone or in combination with other selected herbicides. Soils were a Doak silt loam with a pH of 7.4 and an organic matter content of less than 0.5%. Soils were fertilized according to New Mexico State University recommendations based on soil tests. The experimental design was a randomized complete block with three replications. Individual plots were 10 ft wide by 30 ft long. Treatments were applied with a compressed air backpack sprayer calibrated to deliver 30 gal/ac at 35 psi. Alfalfa was planted at 20 lb/ac with a Massey Ferguson grain drill on May 23. Preemergence treatments were applied on May 24 and immediately incorporated with 0.75 in. of sprinkler-applied water. Soils had a maximum and minimum temperature of 75 and 60°F. Postemergence treatments were applied on June 14 and June 28 when seedling alfalfa was in the 2nd to 3rd trifoliate leaf stage and weeds were small (less than 2 in.). Air temperature maximum and minimum during postemergence applications was 86 and 50°F. One postemergence treatment of Roundup PowerMAX was applied on June 28 when seedling alfalfa was in the 5th to 6th trifoliate leaf stage and weeds were 4 to 6 in. tall. Air temperature maximum and minimum during this postemergence application was 95 and 66°F. Black nightshade and redroot and prostrate pigweed infestations were heavy and common lambsquarters and Russian thistle infestations were moderate throughout the experimental area. Preemergence treatments were rated visually for crop injury and weed control on June 14. Preemergence followed by sequential postemergence treatments were rated visually for weed control on July 13. Postemergence treatments were rated for crop injury and weed control on July 13. Alfalfa was harvested with an Almaco self-propelled plot harvester on August 22. A grab sample was taken from each plot to determine protein content and relative feed value. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Weed control and injury evaluations: Results of crop injury and weed control evaluations are given in Tables 1 and 2. On June 14 both Sharpen and Warrant applied preemergence at 2.5 and 48 oz/ac caused crop injury ratings of 11 and 6, respectively. All treatments except the weedy check gave good to excellent control of redroot and prostrate pigweed, black nightshade, and common lambsquarters. Russian thistle control was poor with Sharpen and Warrant applied preemergence at 2.5 and 48 oz/ac. Roundup PowerMAX applied postemergence on June 28 at the 5th to 6th trifoliate leaf stage caused an injury rating (stunting) of 9 on July 13. On July 13 all treatments except the weedy check gave good to excellent control of all broadleaf weeds (Table 2).

Yield and protein content: Results of yield, protein content, and relative feed values are given in Table 3. The weedy check had the highest yield during the first cutting of 3.5 t/ac. Relative feed value and percent protein content were 6 to 75 and 1.5 to 7.9 percentage points higher in the treated plots as compared to the weedy check, respectively.

BASF, Broadleaf Weed Control in Field Corn with Preemergence Followed by Sequential Postemergence Herbicides

Introduction

Many herbicides can be used in sequential treatments. These trials are preemergence herbicides followed by sequential postemergence treatments. If weeds escape the preemergence treatment, a postemergence treatment may then be used to assist in weed control.

Objectives

- Determine efficacy of selected herbicides for control of annual broadleaf weeds in field corn.
- Determine corn yield and tolerance to applied selected herbicides.

Materials and methods

A field experiment was conducted in 2011 at Farmington, NM, to evaluate the response of field corn (Pioneer PO231HR) and annual broadleaf weeds to preemergence followed by sequential late postemergence herbicides. Soils were a Doak silt loam with a pH of 7.4 and an organic matter content of less than 0.5%. Soils were fertilized according to New Mexico State University recommendations based on soil tests. The experimental design was a randomized complete block with four replications. Individual plots were four 30-in. rows 30 ft long. Treatments were applied with a compressed air backpack sprayer calibrated to deliver 30 gal/ac at 35 psi. Field corn was planted with flexi-planters equipped with disk openers on May 10. Preemergence herbicides were applied on May 11 and immediately incorporated with 0.75 in. of sprinkler-applied water. Soils had a maximum and minimum temperature of 67 and 59°F. Postemergence treatments were applied on June 13, when field corn was in the 3rd to 5th stage and weeds were small (less than 2 in.). Air temperature maximum and minimum during postemergence applications was 84 and 55°F. Black nightshade and redroot and prostrate pigweed infestations were heavy and common lambsquarters and Russian thistle infestations were moderate throughout the experimental area. Preemergence treatments were rated visually for crop injury on June 13 and weed control on June 13 and July 12. Preemergence followed by sequential postemergence treatments were rated visually for weed control on July 12. Stand counts were made on June 13 by counting individual plants per 10 ft of the third row of each plot. Field corn was harvested on November 14 by combining the center two rows of each plot using a John Deere 4420 combine equipped with a load cell. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Weed control and injury evaluations: Crop injury evaluations and stand counts are given in Table 4. Weed control evaluations are given in Tables 4 and 5. There was no crop injury and there were no significant differences among treatments for stand count (Table 4). On June 13 all treatments except the weedy check gave excellent control of redroot and prostrate pigweed, black nightshade, and common lambsquarters. Russian thistle control was poor with Sharpen plus Prowl H₂0 and Zidua applied at 2 plus 32 and 1.5 oz/ac (Table 4). On July 12 all treatments except the weedy check gave excellent control of black nightshade and common lambsquarters. Preemergence applications of Verdict, Balance Flexx, Sharpen plus Prowl H₂0, and Sharpen plus G-Max Lite applied at 12 and 10, 3, 2 plus 32 oz/ac followed by a sequential postemergence application of Roundup PowerMAX at 22 oz/ac gave poor control of redroot pigweed. Prostrate pigweed control was excellent with all treatments except Verdict applied preemergence at 12 oz/ac followed by a sequential postemergence treatment of Roundup Power-MAX at 22 oz/ac and the weedy check. Verdict, Sharpen plus Prowl H₂0 applied preemergence at 12 and 10, 2 plus 32 oz/ac followed by a sequential postemergence treatment of Roundup PowerMAX at 22 oz/ac gave poor control of Russian thistle. Zidua applied preemergence at 1.5 oz/ac gave poor control of Russian thistle (Table 5).

Crop yields: Yields are given in Table 5. Yields were 154 to 211 bu/ac higher in the treated plots as compared to the weedy check.

Bayer CropScience, Broadleaf Weed Control in Field Corn with Either Preemergence or Postemergence Herbicides

Introduction

Controlling annual weeds in corn usually is a two pass program with a preemergence followed by a postemergence herbicide. With increasing cost of herbicides and application, this study was to evaluate season-long control of annual broadleaf weeds with either preemergence or postemergence herbicides.

Objectives

- Determine efficacy of selected herbicides for control of annual broadleaf weeds in field corn.
- Determine corn yield and tolerance to applied selected herbicides.

Materials and methods

A field experiment was conducted in 2011 at Farmington, NM, to evaluate the response of field corn (Pioneer PO231HR) and annual broadleaf weeds to either preemergence or postemergence herbicides. Soils were a Doak silt loam with a pH of 7.4 and an organic matter content of less than 0.5%. Soils were fertilized according to New Mexico State University recommendations based on soil tests. The experimental design was a randomized complete block with four replications. Individual plots were four 30-in. rows 30 ft long. Treatments were applied with a compressed air backpack sprayer calibrated to deliver 30 gal/ac at 35 psi. Field corn was planted with flexi-planters equipped with disk openers on May 11. Preemergence treatments were applied on May 12 and immediately incorporated with 0.75 in. of sprinkler-applied water. Soils had a maximum and minimum temperature of 65 and 60°F. Postemergence treatments were applied on June 13 when field corn was in the 3rd to 5th leaf stage and weeds were small (less than 2 in.). Air temperature maximum and minimum during postemergence applications were 84 and 55°F. Black nightshade and redroot and prostrate pigweed infestations were heavy and common lambsquarters infestations and Russian thistle infestations were moderate throughout the experimental area. Preemergence treatments were rated visually for crop injury on June 13 and for weed control on June 13 and July 13. Postemergence treatments were rated visually for weed control on July 13. Stand counts were made on June 13 by counting individual plants per 10 ft of the third row of each plot. Field corn was harvested on November 15 by combining the center two rows of each plot using a John Deere 4420 combine equipped with a load cell. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Weed control and injury evaluations: Stand counts and injury evaluations are given in Table 6. Weed control evaluations are given in Tables 6 and 7. On June 13, Corvus applied preemergence at 5.6 oz/ac in combination with either atrazine or sharpen at 16 and 2.5 oz/ac had the highest injury rating of 6. All treatments except the weedy check gave excellent control of broadleaf weeds (Table 6). On July 13 preemergence treatments of Corvus plus Sharpen, Verdict plus atrazine and Bicep II Mag applied at 5.6 plus 2.5, 15 plus 16 and 48 oz/ ac and postemergence treatments of Capreno alone or in combination with atrazine applied at 3 and 3 plus 16 oz/ac gave excellent control of redroot pigweed. Prostrate pigweed and black nightshade control was good to excellent with all treatments except the weedy check, Verdict plus atrazine applied preemergence at 15 plus 16 oz/ac, and the postemergence treatment of Roundup PowerMAX applied at 22 oz/ac. Preemergence treatments of Verdict plus atrazine and Bicep II Mag at 15 plus 16 and 48 oz/ac and postemergence treatments of Halex GT and Roundup PowerMAX applied

at 58 and 22 oz/ac gave poor control of Russian thistle. Common lambsquarters control was marginal with the preemergence treatment of Verdict plus atrazine applied at 15 plus 16 oz/ac and the postemergence treatment of Roundup PowerMAX applied at 22 oz/ac (Table 7).

Crop yields: Yields are given in Table 7. Yields were 130 to 207 bu/ac higher in the herbicide-treated plots as compared to the check.

Bayer CropScience, Broadleaf Weed Control in Field Corn with Preemergence Followed by Sequential Postemergence Herbicides

Introduction

Many herbicides can be used in sequential treatments. These trials are preemergence herbicides followed by sequential postemergence treatments. If weeds escape the preemergence treatment, a postemergence treatment may then be used to assist in weed control.

Objectives

- Determine efficacy of selected herbicides for control of annual broadleaf weeds in field corn.
- Determine corn yield and tolerance to applied selected herbicides.

Materials and methods

A field experiment was conducted in 2011 at Farmington, NM, to evaluate the response of field corn (Pioneer PO231HR) and annual broadleaf weeds to preemergence and preemergence followed by sequential postemergence herbicides. Soils were a Doak silt loam with a pH of 7.4 and an organic matter content of less than 0.5%. Soils were fertilized according to New Mexico State University recommendations based on soil tests. The experimental design was a randomized complete block with three replications. Individual plots were four 30-in. rows 30 ft long. Treatments were applied with a compressed air backpack sprayer calibrated to deliver 30 gal/ac at 35 psi. Field corn was planted with flexiplanters equipped with disk openers on May 10. Preemergence herbicides were applied on May 11 and immediately incorporated with 0.75 in. of sprinklerapplied water. Soil had a maximum and minimum temperature of 67 and 59°F. Postemergence treatments were applied on June 13, when field corn was in the 3rd to 5th leaf stage and weeds were small (less than 2 in.). Air temperature maximum and minimum during postemergence applications was 84 and 55°F. Black nightshade and redroot and prostrate pigweed infestations were heavy and common lambsquarters and Russian thistle infestations were moderate throughout the experimental

area. Preemergence treatments were rated visually for crop injury and weed control on June 13. Preemergence followed by sequential postemergence treatments were rated visually for weed control on July 12. Stand counts were made on June 13 by counting individual plants per 10 ft of the third row of each plot. Field corn was harvested on November 14 by combining the center two rows of each plot using a John Deere 4420 combine equipped with a load cell. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Weed control and injury evaluations: Crop injury evaluations and stand counts are given in Table 8. Weed control evaluations are given in Tables 8 and 9. There was no crop injury from any of the treatments (Table 8). On June 13, all treatments except the weedy check gave excellent control of prostrate pigweed, black nightshade, and common lambsquarters. Sharpen at 2.5 oz/ac gave poor control of redroot pigweed and Russian thistle. Corvus or Balance Flexx plus atrazine applied preemergence at 3 oz/ac in combination with atrazine at 16 oz/ ac gave excellent control of Russian thistle (Table 8). On July 12 Corvus plus atrazine applied preemergence at 3 plus 16 oz/ac followed by sequential postemergence applications of Laudis, Ignite, Roundup PowerMAX, and Capreno at 3, plus 16, 22 oz/ac and Balance Flexx applied preemergence at 3 oz/ac followed by a sequential postemergence application of Capreno at 3 oz/ac gave excellent control of all broadleaf weeds (Table 9).

Crop yields: Yields are given in Table 9. Yields were 167 to 200 bu/ac higher in the herbicide-treated plots as compared to the check.

DuPont Crop Protection, Broadleaf Weed Control in Field Corn with Preemergence Followed by Sequential Postemergence Herbicides

Introduction

Many herbicides can be used in sequential treatments. These trials are preemergence herbicides followed by sequential postemergence treatments. If weeds escape the preemergence treatment, a postemergence treatment may then be used to assist in weed control.

Objectives

- Determine efficacy of selected herbicides for control of annual broadleaf weeds in field corn.
- Determine corn yield and tolerance to applied selected herbicides.

Materials and methods

A field experiment was conducted in 2011 at Farmington, NM, to evaluate the response of field corn (Pioneer PO231HR) and annual broadleaf weeds to preemergence and preemergence followed by sequential postemergence herbicides. Soils were a Doak silt loam with a pH of 7.4 and an organic matter content of less than 0.5%. Soils were fertilized according to New Mexico State University recommendations based on soil tests. The experimental design was a randomized complete block with four replications. Individual plots were four 30-in. rows 30 ft long. Treatments were applied with a compressed air backpack sprayer calibrated to deliver 30 gal/ac at 35 psi. Field corn was planted with flexi-planters equipped with disk openers on May 10. Preemergence herbicides were applied on May 12 and immediately incorporated with 0.75 in. of sprinkler-applied water. Soil had a maximum and minimum temperature of 65 and 60°F. Postemergence treatments were applied on June 13, when field corn was in the 3rd to 5th leaf stage and weeds were small (less than 2 in.). Air temperature maximum and minimum during postemergence application were 84 and 55°F. Black nightshade and redroot and prostrate pigweed infestations were heavy and common lambsquarters and Russian thistle infestations were moderate throughout the experimental area. Preemergence treatments were rated visually for crop injury and weed control on June 13. Preemergence followed by sequential postemergence treatments were rated visually for weed control on July 13. Stand counts were made on June 13 by counting individual plants per 10 ft of the third row of each plot. Field corn was harvested on November 15 by combining the center two rows of each plot using a John Deere 4420 combine equipped with a load cell. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Weed control and injury evaluations: Crop injury evaluations and stand counts are given in Table 10. Weed control evaluations are given in Tables 10 and 11. On June 13 Lumax applied preemergence at 96 oz/ac and the weedy check were the only treatments that did not cause significant crop injury (Table 10). All treatments gave excellent control of redroot and prostrate pigweed, black nightshade, and common lambsquarters. Rimsulfuron plus mesotrione applied preemergence alone or in combination with thifensulfuron at 1 plus 4.5 oz/ac plus 0.5 oz/ac gave poor control of Russian thistle (Table 10). On July 13 Lumax applied preemergence at 96 oz/ac and followed by a sequential postemergence treatments of Roundup PowerMAX applied at 32 oz/ac gave good to excellent control of redroot pigweed. Prostrate pigweed control was poor with rimsulfuron plus mesotrione applied preemergence at

1.5 plus 4.5 oz/ac. Rimsulfuron plus mesotrione applied alone at 1 plus 4.5 oz/ac or in combination with either thifensulfuron or atrazine at 0.5 and 32 oz/ac gave poor control of black nightshade. Rimsulfuron plus mesotrione plus atrazine applied preemergence at 1 plus 4.5 plus 32 oz/ac and Lumax applied preemergence at 96 oz/ac both followed by a sequential postemergence treatment of Roundup PowerMAX at 32 oz/ac gave excellent control of Russian thistle. All treatments except the weedy check gave excellent control of common lambsquarters (Table 11).

Crop yields: Yields are given in Table 11. Yields were 68 to 205 bu/ac higher in the herbicide-treated plots as compared to the check.

Bayer CropScience, Broadleaf Weed Control in Grain Sorghum with Preemergence Followed by Sequential Postemergence Herbicides

Introduction

Postemergence herbicides are most effective if applied when the weeds and grain sorghum are small. If weeds are not controlled, weeds then become difficult to control with grain sorghum growth being restricted. This trial was to examine the efficacy of preemergence followed by sequential postemergence herbicides applied to grain sorghum and weeds, and to evaluate their effect on crop injury and grain sorghum yields.

Objectives

- Determine efficacy of selected herbicides for control of annual broadleaf weeds in grain sorghum.
- Determine grain sorghum yield and tolerance to applied herbicides.

Materials and methods

A field experiment was conducted in 2011 at Farmington, NM, to evaluate the response of grain sorghum (Pioneer, DKS 53-67) and annual broadleaf weeds to preemergence followed by sequential postemergence herbicides. Soils were a Doak silt loam with a pH of 7.4 and an organic matter content of less than 0.5%. Soils were fertilized according to New Mexico State University recommendations based on soil tests. The experimental design was a randomized complete block with four replications. Individual plots were four 30-in. rows 30 ft long. Treatments were applied with a compressed air backpack sprayer calibrated to deliver 30 gal/ac at 35 psi. Grain sorghum was planted with flexi-planters equipped with disk openers on May 31. Preemergence treatments were applied on June 2 and immediately incorporated with 0.75 in. of sprinkler-applied water. Soil temperature maximum and minimum during

application were 70 and 69°F. Postemergence treatments were applied on June 28 when grain sorghum was in the V5 leaf stage and weeds were less than 4 in. in height. Air temperatures, maximum and minimum for postemergence applications were 95 and 66°F. Black nightshade and redroot and prostrate pigweed infestations were heavy and common lambsquarters infestations and Russian thistle infestations were moderate throughout the experimental area. Preemergence treatments were evaluated for crop injury and weed control on June 28. Preemergence followed by sequential postemergence treatments were evaluated for weed control on July 28. Grain sorghum was harvested on November 17 by combining the center two rows of each plot using a John Deere 4420 combine equipped with a load cell. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Weed control and injury evaluations: Crop injury evaluations are given in Table 12. Weed control evaluations are given in Tables 12 and 13. There were no crop injury symptoms from any of the treatments for both rating periods. One June 28 all treatments except the weedy check gave excellent control of redroot and prostrate pigweed, black nightshade, and common lambsquarters. Atrazine applied preemergence at 32 oz/ac gave poor control of Russian thistle (Table 12). On July 28 atrazine plus Buctril applied at 16 plus 16 oz/ac gave poor control of redroot pigweed. All treatments except the weedy check gave excellent control of prostrate pigweed, black nightshade, and common lambsquarters. Russian thistle control was poor with the preemergence application of Guardsman Max applied at 48 oz/ac (Table 13).

Crop yields: Yields are given in Table 13. Yields were 57 to 125 bu/ac higher in the herbicide-treated plots as compared to the weedy check.

Dow AgroSciences, Jim Hill Mustard Control in Winter Wheat

Introduction

Jim Hill mustard (tumble mustard) is a troublesome weed in winter wheat. If not controlled they can decrease wheat yields and interfere with harvest operations. Field trials were conducted to evaluate the control of Jim Hill mustard by selected herbicides in winter wheat.

Objectives

- Determine efficacy of selected herbicides for control of Jim Hill mustard in winter wheat.
- Determine winter wheat yield and tolerance to applied selected herbicides.

Materials and methods

A field experiment was conducted in 2011 on a Wall sandy loam with less than 0.5% organic matter at Farmington, NM, to evaluate the response of winter wheat and Jim Hill mustard (tumble mustard) to postemergence herbicides. The experimental design was a randomized complete block with three replications. Individual plots were 10 ft wide by 30 ft long. Treatments were applied with a compressed air backpack sprayer calibrated to deliver 30 gal/ac at 35 psi. Winter wheat (var. Promontory) was planted in 18-in. rows at 100 lb/ac with a Massey Ferguson grain drill on September 12, 2010. Eighteen inch row spacings were used to ensure mustard pressure. Treatments were applied on March 30, prior to winter wheat at Feekes 6 growth stage. Air temperature maximum and minimum during treatment application was 57 and 28°F. Other postemergence treatments were applied on April 28 when winter wheat was approximately at the Feekes 9 growth stage. Air temperature maximum and minimum during treatment application was 52 and 29°F. On March 30 and April 28 Jim Hill mustard heights were less than 4 and greater than 8 in. in height. Jim Hill mustard infestation was heavy throughout the experimental area. Crop injury and weed control evaluations were made on May 23. Winter wheat was harvested with a John Deere 3300 combine equipped with a load cell on July 28. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Weed control and injury evaluations: Results of crop injury and weed control evaluations are given in Table 14. On May 23 there were no crop injury symptoms from any of the treatments. Banvel, and BASF 8100H applied at 4, 2, and 2.2 oz/ac in combination with Harmony GT XP at either 0.3 or 0.6 oz/ac, Olympus, Maverick and Axial applied at 0.9, 0.66 and 16.4 oz/ac gave poor control of Jim Hill mustard (Table 14).

Yield: Results of yield are given in Table 14. Yields were 7 to 33 bu/ac higher in the herbicide-treated plots as compared to the weedy check.

DuPont Crop Protection, Cool Season Native and Non-Native Grass Response to MAT 28

Introduction

In the San Juan Oil and Gas Producing Basin of northwest New Mexico, it is estimated that approximately 20,000 to 30,000 acres of disturbed lands created by oil and natural gas drilling will need to be re-vegetated during the next 10 years. Most herbicides used today injure grass seedlings during germination followed by future replanting. A field trial was conducted to determine MAT 28 injury to seedlings and permanent grass stands.

Objectives

• Determine yield of selected non-native and native cool-season grasses to MAT 28 applied alone or in combination with other herbicides.

Materials and methods

A field experiment was conducted in 2011 at Farmington, NM, to evaluate the response of selected non-native and native cool-season grasses to MAT 28. Soils were a Doak silt loam with a pH of 7.5 and an organic matter content of less than 0.5%. Soils were fertilized according to New Mexico State University recommendations based on soil tests. The experimental design was a split plot with rangeland grasses as whole plots and herbicide treatments as sub plots. Individual plots were 6 ft wide by 30 ft long. San Luis slender wheatgrass, Manchar smoothbrome grass, Rimrock Indian ricegrass, HyCrest crested wheatgrass, Oahe intermediate wheatgrass, Lune pubescent wheatgrass, Potomac orchardgrass, and Fawn tall fescue were planted on August 18, 2009, at 8, 8, 6, 8, 10, 9, 5, and 15 lb pls/ac (pure live seed), respectively. MAT 28 was applied preemergence at 4 oz/ac on August 25 and 26, 2009-2010, and was immediately incorporated with 0.75 in. of sprinkler-applied water. All other treatments were applied postemergence with a non-ionic surfactant at 22 oz/ac on April 22 and 28, 2010-2011. Preemergence treatment soil maximum and minimum temperatures on April 22 and 28, 2010-2011, were 94 and 72, and 80 and 72°F, respectively. Air temperature maximum and minimum temperatures for the postemergence treatments on April 28, 2011, were 77 and 48°F. Grass stand establishment ratings for 2011 were similar to 2010 (data not presented). Plots were harvested with an Almaco plot harvester on June 9, 2011. Only 2011 grass green weight yield in lb/plot will be presented. Results obtained were subjected to analysis of variance at P = 0.05.

Results and discussion

Grass yield: Grass green weight yields are given in Table 15. MAT 28 applied preemergence at 4.0 oz/ac yielded significantly less grass per plot as compared to the other treatments. Oahe intermediate wheatgrass, Fawn tall fescue and Luna pubescent wheatgrass were the highest-yielding grasses (Table 15).

Table 1. Control of Annual Broadleaf Weeds with Preemergence Herbicides in Spring-Seeded Roundup Ready Alfalfa, June 14; NMSU Agricultural Science Center at Farmington, NM, 2011

		Crop		—— We	ed Contro	1 ^{a,b}	
Treatments	Rate (oz/ac)	Injuryª (%)	Amare	Amabl	Solni (%)	Saskr	Cheal
Sharpen	2.5	11	92	92	88	43	98
Warrant	48	6	100	100	96	43	98
Weedy check		0	0	0	0	0	0
LSD 0.05		2	4	1	6	5	3

^aBased on visual scale from 0 to 100, where 0 = no control or crop injury and 100 = dead plants.

^bAmare = redroot pigweed, Amabl = prostrate pigweed, Solni = black nightshade, Saskr = Russian thistle, and Cheal = common lambsquarters.

Table 2. Control of Annual Broadleaf Weeds with Preemergence, Preemergence Followed by Sequential Postemergence, and Postemergence Herbicides in Spring-Seeded Roundup Ready Alfalfa, July 13; NMSU Agricultural Science Center at Farmington, NM, 2011

		Crop		·	Weed Control ^c	,d		
	Rate	Injury	Amare	Amabl	Solni	Saskr	Cheal	
Treatments ^a	(oz/ac)	(%)			(%)			
Roundup PowerMAX + AMS	22 + 3 lb/ac	0	100	100	95	100	100	
Roundup PowerMAX + AMS ^b	44 + 3 lb/ac	9	100	100	100	100	100	
Sharpen/Roundup PowerMAX + AMS	2.5/22 + 3 lb/ac	9	85	100	86	100	100	
Raptor + Select Max + MSO + AMS	5 + 9 + 24 + 3 lb/ac	0	100	100	80	100	100	
Butyrac + Roundup PowerMAX + AMS	64 + 22 + 3 lb/ac	0	100	100	100	100	100	
Raptor + Roundup PowerMAX + MSO + AMS	5 + 22 + 24 + 3 lb/ac	0	100	100	100	100	100	
Pursuit + Roundup PowerMAX + MSO + AMS	4 + 22 + 24 + 3 lb/ac	0	100	100	100	100	100	
Prowl H ₂ 0 + Roundup PowerMAX + AMS	32 + 22 + 3 lb/ac	0	100	100	90	86	100	
Roundup PowerMAX + Select Max + MSO +	22 + 9 + 24 + 3 lb/ac	0	100	100	99	100	100	
AMS								
Warrant/Roundup PowerMAX + AMS	48/22 + 3 lb/ac	3	100	100	100	100	100	
Warrant + Roundup PowerMAX + AMS	48 + 22 + 3 lb/ac	0	100	98	98	82	100	
Raptor + Prowl H ₂ 0 + MSO + AMS	6 + 32 + 24 + 3 lb/ac	0	100	100	100	100	100	
Pursuit + Prowl H ₂ 0 + MSO + AMS	6 + 32 + 24 + 3 lb/ac	0	100	100	98	100	100	
Raptor + Prowl H ₂ 0 + Roundup PowerMAX +	6 + 32 + 22 + 24 +							
MSO + AMS	3 lb/ac	0	100	100	100	100	100	
Pursuit + Prowl H ₂ 0 + Roundup PowerMAX +	X + 6 + 32 + 22 + 24 +		100	100	100	100	100	
MSO + AMS	3 lb/ac							
Weedy check		0	0	0	0	0	0	
LSD 0.05		1	4	1	2	1	1	

^aFirst treatment applied preemergence followed by a sequential postemergence treatment, and AMS, MSO denote ammonium sulfate and methylated seed oil, respectively.

^bTreatment applied postemergence on June 28.

^cBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

	Rate	Yield ^c	RFV ^d	Protein Content
Treatments ^a	(oz/ac)	(t/ac)	(%)	(%)
Roundup PowerMAX + AMS	22 + 3 lb/ac	2.3	188	22.8
Roundup PowerMAX + AMS ^b	44 + 3 lb/ac	2.4	198	23.7
Sharpen/Roundup PowerMAX + AMS	2.5/22 + 3 lb/ac	2.9	154	17.3
Raptor + Select Max + MSO + AMS	5 + 9 + 24 + 3 lb/ac	2.3	167	21.3
Butyrac + Roundup PowerMAX + AMS	64 + 22 + 3 lb/ac	2.3	186	22.0
Raptor + Roundup PowerMAX + MSO + AMS	5 + 22 + 24 + 3 lb/ac	2.3	163	20.7
Pursuit + Roundup PowerMAX + MSO + AMS	4 + 22 + 24 + 3 lb/ac	2.2	202	23.5
Prowl H ₂ 0 + Roundup PowerMAX + AMS	32 + 22 + 3 lb/ac	2.8	134	17.7
Roundup PowerMAX + Select Max + MSO + AMS	22 + 9 + 24 + 3 lb/ac	2.3	156	19.1
Warrant/Roundup PowerMAX + AMS	48/22 + 3 lb/ac	2.3	181	21.7
Warrant + Roundup PowerMAX + AMS	48 + 22 + 3 lb/ac	2.9	133	17.4
Raptor + Prowl H_20 + MSO + AMS	6 + 32 + 24 + 3 lb/ac	2.4	176	21.8
Pursuit + Prowl H_20 + MSO + AMS	6 + 32 + 24 + 3 lb/ac	2.3	185	22.3
Raptor + Prowl H ₂ 0 + Roundup PowerMAX + MSO + AMS	6 + 32 + 22 + 24 + 3 lb/ac	2.2	178	22.3
Pursuit + Prowl H ₂ 0 + Roundup PowerMAX + MSO + AMS	6 + 32 + 22 + 24 + 3 lb/ac	2.3	187	22.4
Weedy check		3.5	127	15.8
LSD 0.05		0.3	38	3.6

Table 3. Yield, Protein, and RFV of Spring-Seeded Roundup Ready Alfalfa, from Herbicide Applications of Preemergence, Preemergence Followed by Sequential Postemergence, and Postemergence Herbicides, August 22; NMSU Agricultural Science Center at Farmington, NM, 2011

^aFirst treatment applied preemergence followed by a sequential postemergence treatment, and AMS, MSO denote ammonium sulfate and methylated seed oil, respectively.

^bTreatment applied postemergence on June 28.

^cTons/ac based on a 20 percent moisture basis.

^dRFV denotes relative feed value.

		Stand	Crop			Weed Control ^a	,b	
	Rate	Count	Injuryª	Amare	Amabl	Solni	Saskr	Cheal
Treatments	(oz/ac)	(no.)	(%)			(%)		
Verdict	12	25	0	100	100	100	96	100
Lumax	64	23	0	100	100	100	94	100
Balance Flexx	3	24	0	98	100	100	100	100
Sharpen + Prowl H ₂ 0	2 + 32	24	0	94	99	100	67	100
Sharpen + G-Max Lite	2 + 32	23	0	100	100	100	99	100
Verdict	10	24	0	100	100	100	94	100
Zidua	1.5	25	0	100	100	100	51	100
Zidua + Verdict	1.5 + 10	23	0	100	100	100	99	100
G-Max Lite	40	24	0	100	100	100	84	100
Weedy check		23	0	0	0	0	0	0
LSD 0.05		ns		2	1	1	12	1

Table 4. Control of Annual Broadleaf Weeds with Preemergence Herbicides in Field Corn on June 13; NMSU Agricultural
Science Center at Farmington, NM, 2011

^aBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

	Rate	Amare	Amabl	Solni	Saskr	Cheal	Yield
Treatments ^a	(oz/ac)			— (%) —			(bu/ac)
Verdict/Roundup PowerMAX +	12/22 + 10 + 5 lb/ac	13	68	100	42	100	221
NIS + AMS							
Lumax/Roundup PowerMAX + NIS + AMS	65/22 + 10 + 5 lb/ac	91	100	100	95	100	272
Balance Flexx/Roundup PowerMAX + NIS +	3/22 + 10 + 5 lb/ac	23	94	100	92	100	230
AMS							
Sharpen + Prowl H ₂ 0/Roundup PowerMAX +	2 + 32/22 + 10 + 5 lb/ac	45	96	100	71	100	234
NIS + AMS							
Sharpen + G-Max Lite/Roundup PowerMAX +	2 + 32/22 + 10 + 5 lb/ac	50	98	100	90	100	267
NIS + AMS							
Verdict/Roundup PowerMAX +	10/22 + 10 + 5 lb/ac	12	95	99	50	100	226
NIS + AMS							
Zidua	1.5	83	96	100	13	100	227
Zidua + Verdict	1.5 + 10	96	99	100	98	100	273
Zidua + Verdict/Roundup PowerMAX +	1.5 + 10/22 + 5 + 5 lb/ac	95	100	100	99	100	277
Status + AMS							
Verdict/Zidua + Roundup PowerMAX +	10/1.5 + 22 + 5 + 5 lb/ac	99	100	100	100	100	278
Status + AMS							
G-Max Lite/Status + AMS	40/5 + 5 lb/ac	72	99	100	98	100	262
Weedy check		0	0	0	0	0	67
LSD 0.05		10	3	1	8	1	17

Table 5. Control of Annual Broadleaf Weeds with Preemergence Followed by Sequential Postemergence Herbicides in Field Corn on July 12; NMSU Agricultural Science Center at Farmington, NM, 2011

^aFirst treatment applied preemergence, then a slash followed by a sequential postemergence treatment; NIS and AMS denote a non-ionic surfactant and ammonium sulfate, respectively.

^bBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

^cAmare = redroot pigweed, Amabl = prostrate pigweed, Solni = black nightshade, Saskr = Russian thistle, and Cheal = common lambsquarters.

Table 6. Control of Annual Broadleaf Weeds with Preemergence Herbicides in Field Corn on June 13; NMSU Agricultural	
Science Center at Farmington, NM, 2011	

		Stand	Сгор		/	Weed Contro	[a,b	
	Rate	Count	Injuryª	Amare	Amabl	Solni	Saskr	Cheal
Treatments	(oz/ac)	(no.)	(%)			(%)		
Corvus + atrazine	5.6 + 16	25	6	100	100	100	100	100
Corvus + Sharpen	5.6 + 2.5	24	6	100	100	100	100	100
Balance Flexx + atrazine	6 + 16	24	0	100	100	100	100	100
Lumax	48	24	0	100	100	100	100	100
Harness Xtra	48	24	0	100	100	100	100	100
Verdict + atrazine	15 + 16	23	0	100	100	100	100	100
Bicep II Mag	48	25	0	100	100	100	99	100
Weedy check		24	0	0	0	0	0	0
LSD 0.05		ns	1	1	1	1	1	1

^aBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

		Crop						
	Rate	Injury ^b	Amare	Amabl	Solni	Saskr	Cheal	Yield
Treatments	(oz/ac)	(%)			—— (%) —			(bu/ac)
Corvus + atrazine	5.6 + 16	6	79	99	100	100	100	242
Corvus + Sharpen	5.6 + 2.5	6	99	98	100	100	100	247
Balance Flexx + atrazine	6 + 16	0	33	100	100	100	100	268
Lumax	48	0	79	98	100	80	100	263
Harness Xtra	48	0	50	91	100	82	100	250
Verdict + atrazine	15 + 16	0	99	60	77	73	80	251
Bicep II Mag	48	0	88	95	100	58	100	263
Capreno + COC + AMS ^a	3 + 38 + 2.5 lb	0	95	99	100	100	100	277
Capreno + atrazine + COC + AMS ^a	3 + 16 + 38 + 2.5 lb	0	97	99	100	100	100	278
Halex GT + NIS + AMS ^a	58 + 10 + 2.5 lb	0	40	92	100	78	100	242
Roundup PowerMAX + AMSª	22 + 2.5 lb	0	15	47	81	33	81	201
Weedy check		0	0	0	0	0	0	71
LSD 0.05		1	7	6	3	5	2	16

Table 7. Control of Annual Broadleaf Weeds with Either Preemergence or Postemergence Herbicides in Field Corn on July13; NMSU Agricultural Science Center at Farmington, NM, 2011

^aTreatments applied postemergence; COC, AMS, and NIS denote crop oil concentrate, ammonium sulfate, and non-ionic surfactant, respectively.

 b Based on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

Amare = redroot pigweed, Amabl = prostrate pigweed, Solni = black nightshade, Saskr = Russian thistle, and Cheal = common lambsquarters.

Table 8. Control of Annual Broadleaf Weeds with Preemergence Herbicides in Field Corn on June 13; NMSU Agricultur	al
Science Center at Farmington, NM, 2011	

	0	Stand	Сгор	Weed Control ^{a,b}					
	Rate	Count	Injuryª	Amare	Amabl	Solni	Saskr	Cheal	
Treatments	(oz/ac)	(no.)	(%)			(%)			
Corvus + atrazine	3 + 16	25	0	100	100	100	98	100	
Balance Flexx + atrazine	3 + 16	23	0	100	100	100	97	100	
Lumax	48	24	0	100	100	100	36	100	
Harness Xtra	48	24	0	100	100	100	40	100	
Verdict	15	24	0	100	100	100	73	100	
Verdict	12	25	0	88	100	100	30	100	
G-Max Lite	48	24	0	100	100	100	70	100	
Sharpen	2.5	24	0	38	100	100	33	100	
Weedy check		24	0	0	0	0	0	0	
LSD 0.05		ns		3	1	1	16	1	

^aBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

	Rate	Amare	Amabl	Solni	Saskr	Cheal	Yield
Treatments ^a	(oz/ac)			(%)			(bu/ac)
Corvus + atrazine/Laudis + MSO + AMS	3 + 16/3 + 38 + 2.5 lb	97	100	100	99	100	266
Corvus + atrazine/Ignite + AMS	3 + 16/22 + 3 lb	99	100	100	99	100	270
Corvus + atrazine/Roundup PowerMAX + AMS	3 + 16/22 + 3 lb	90	100	100	90	100	274
Corvus + atrazine/Capreno + COC + AMS	3 + 16/3 + 38 + 2.5 lb	100	97	100	100	100	268
Balance Flexx + atrazine/Laudis + MSO + AMS	3 + 16/3 + 38 + 2.5 lb	86	99	100	100	100	255
Balance Flexx + atrazine/Ignite + AMS	3 + 16/22 + 3 lb	18	92	100	62	100	252
Balance Flexx + atrazine/Roundup PowerMAX + AMS	3 + 16/22 + 3 lb	20	95	100	92	100	259
Balance Flexx + atrazine/Capreno + COC + AMS	3 + 16/3 + 38 + 2.5 lb	100	100	100	100	100	265
Lumax/Touchdown Total + AMS	48/24 + 2.5 lb	96	100	100	18	100	270
Lumax/Halex GT + NIS + AMS	48/58 + 10 + 2.5 lb	100	100	100	86	100	268
Harness Xtra/Roundup PowerMAX + AMS	48/22 + 2.5 lb	40	86	100	46	100	256
Verdict/Status + AMS	15/2.5 + 2.5 lb	30	94	100	92	100	249
Verdict/Status + AMS	12/2.5 + 2.5 lb	11	94	100	70	100	241
G-Max Lite/Status + AMS	48/2.5 + 2.5 lb	86	96	100	26	100	265
Sharpen/Status + AMS	2.5/2.5 + 2.5 lb	11	90	100	43	100	249
Weedy check		0	0	0	0	0	74
LSD 0.05		11	3	1	22	1	17

Table 9. Control of Annual Broadleaf Weeds with Preemergence Followed by Sequential Postemergence Herbicides in FieldCorn on July 12; NMSU Agricultural Science Center at Farmington, NM, 2011

^aFirst treatment applied preemergence then a slash followed by a sequential postemergence treatment; MSO, COC, NIS, and AMS denote methylated seed oil, crop oil concentrate, non-ionic surfactant, and ammonium sulfate, respectively.

^bBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

^cAmare = redroot pigweed, Amabl = prostrate pigweed, Solni = black nightshade, Saskr = Russian thistle, and Cheal = common lambsquarters.

Table 10. Control of Annual Broadleaf Weeds with Preemergence Herbicides in Field Corn on June 13; NMS	U
Agricultural Science Center at Farmington, NM, 2011	

		Stand	Сгор		a,b			
	Rate	Count	Injuryª	Amare	Amabl	Solni	Saskr	Cheal
Treatments	(oz/ac)	(no.)	(%)			— (%) —		
Rimsulfuron + mesotrione	1.0 + 4.5	25	18	99	100	100	57	100
Rimsulfuron + mesotrione	1.5 + 4.5	23	23	100	100	100	58	100
Rimsulfuron + mesotrione +	1.0 + 4.5 + 0.5	24	22	99	100	100	58	100
thifensulfuron								
Rimsulfuron + mesotrione + atrazine	1.0 + 4.5 + 32	24	22	99	100	100	99	100
Rimsulfuron + mesotrione + atrazine	1.5 + 4. 5+ 32	24	24	100	100	100	99	100
Rimsulfuron + mesotrione + atrazine +	1.0 + 4.5 + 32 + 0.5	24	17	97	100	100	94	100
thifensulfuron								
Lumax	96	25	0	100	100	100	99	100
Weedy check		24	0	0	0	0	0	0
LSD 0.05		ns	5	2	1	1	6	1

^aBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

			Weed Control ^{b,c}					
	Rate	Amare	Amabl	Solni	Saskr	Cheal	Yield	
Treatments ^a	(oz/ac)			(%)			(bu/ac)	
Rimsulfuron + mesotrione	1.0 + 4.5	50	90	73	16	99	184	
Rimsulfuron + mesotrione	1.5 + 4.5	35	78	85	15	100	193	
Rimsulfuron + mesotrione + thifensulfuron	1.0 + 4.5 + 0.5	74	91	78	51	99	185	
Rimsulfuron + mesotrione + atrazine	1.0 + 4.5 + 32	28	91	99	82	100	169	
Rimsulfuron + mesotrione + atrazine	1.5 + 4.5 + 32	26	89	97	90	100	140	
Rimsulfuron + mesotrione + atrazine +	1.0 + 4.5 + 32 + 0.5	26	88	79	51	100	159	
thifensulfuron								
Rimsulfuron + mesotrione + atrazine/	1.0 + 4.5 + 32/32 + 2 lb/ac	25	99	97	83	100	183	
Roundup PowerMAX + AMS								
Rimsulfuron + mesotrione + atrazine/	1.5 + 4.5 + 32/32 + 2 lb/ac	45	93	100	96	100	184	
Roundup PowerMAX + AMS								
Rimsulfuron + mesotrione + atrazine +	1.0 + 4.5 + 32 + 0.5/32 + 2 lb/ac	36	92	98	82	100	183	
thifensulfuron/Roundup PowerMAX + AMS								
Lumax	96	88	98	100	78	100	270	
Lumax/Roundup PowerMAX + AMS	96/32 + 2 lb/ac	90	99	100	98	100	277	
Weedy check		0	0	0	0	0	72	
LSD 0.05		6	3	3	4	1	26	

Table 11. Control of Annual Broadleaf Weeds with Preemergence Followed by Sequential Postemergence Herbicides in Field Corn on July 13; NMSU Agricultural Science Center at Farmington, NM, 2011

^aFirst treatment applied preemergence, then a slash followed by a sequential postemergence treatment; AMS denotes ammonium sulfate.

^bBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

^cAmare = redroot pigweed, Amabl = prostrate pigweed, Solni = black nightshade, Saskr = Russian thistle, and Cheal = common lambsquarters.

Table 12. Control of Annual Broadleaf Weeds with Preemergence Herbicides in	
Grain Sorghum on June 28; NMSU Agricultural Science Center at	
Farmington, NM, 2011	

		Сгор		ed Contro	ol ^{a,b}			
	Rate	Injuryª	Amare	Amabl	Solni	Saskr	Cheal	
Treatments	(oz/ac)	(%)			— (%) —			
Guardsman Max	48	0	99	100	100	93	100	
Cinch ATZ	48	0	98	99	100	94	100	
Atrazine	32	0	99	100	99	82	100	
Weedy check		0	0	0	0	0	0	
LSD 0.05		ns	2	1	1	9	1	

^aBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

Table 13. Control of Annual Broadleaf Weeds with Preemergence Followed by Sequential Postemergence Herbicides in Grain Sorghum on July 28; NMSU Agricultural Science Center at Farmington, NM, 2011

	Rate	Amare	Amabl	Solni	Saskr	Cheal	Yield	
Treatments ^a	(oz/ac)			(%)			(bu/ac)	
Huskie + atrazine + AMS	13 + 16 + 1 lb/ac	98	99	100	100	100	110	
Huskie + atrazine + AMS	16 + 16 + 1 lb/ac	98	100	100	99	100	109	
Huskie + AMS	13 + 1 lb/ac	87	88	95	90	100	117	
Atrazine + Buctril	16 + 16	66	93	100	100	100	77	
Huskie + atrazine + AMS	16 + 16 + 2 lb/ac	100	100	100	100	100	134	
Huskie + atrazine + AMS	10 + 16 + 2 lb/ac	100	100	100	100	100	122	
Guardsman Max	48	100	100	100	79	100	139	
Guardsman Max/Huskie + AMS	48/13 + 1 lb/ac	100	100	100	100	100	124	
Cinch ATZ	48	100	100	100	100	100	121	
Cinch ATZ/Huskie + AMS	48/13 + 1 lb/ac	100	100	100	100	100	145	
Atrazine/Huskie + AMS	32/13 + 1 lb/ac	100	100	100	100	100	142	
Weedy check		0	0	0	0	0	20	
LSD 0.05		2	3	2	2	1	31	

^aFirst treatment applied preemergence followed by a slash, then a sequential postemergence treatment; AMS denotes ammonium sulfate, and all other treatments were applied postemergence.

^bAmare = redroot pigweed, Amabl = prostrate pigweed, Solni = black nightshade, Saskr = Russian thistle, and Cheal = common lambsquarters, and based on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

Table 14. Control of Jim Hill Mustard in Promontory Winter Wheat on May 23; NMSU Agricultural Science Center at Farmington, NM, 2011

		Сгор	Weed Control ^{c,d}		
	Rate	Injury ^c	SSYAL	Yield	
Treatments ^a	(oz/ac)	(%)	(%)	(bu/ac)	
BASF 8100H + Harmony GT XP + NIS	4.4 + 0.3 + 20	0	94	68	
Banvel + Harmony GT XP + NIS	4 + 0.3 + 20	0	65	65	
BASF 8100H + Harmony GT XP + NIS ^b	2.2 + 0.6 + 20	0	68	64	
Banvel + Harmony GT XP + NIS ^b	2 + 0.6 + 20	0	68	67	
Powerflex + NIS + AMS	3.5 + 20 + 1.52 lb/ac	0	99	66	
Pyroxsulam + Cloquintocet + NIS + AMS	2 + 20 + 1.52 lb/ac	0	100	61	
Olympus + NIS	0.9 + 20	0	78	65	
Olympus Flex + NIS + AMS	3.17 + 20 + 1.52 lb/ac	0	89	76	
Maverick + NIS	0.66 + 20	0	43	52	
Axial	16.4	0	28	55	
Harmony GT XP + 2,4-D ester + NIS	0.6 + 6 + 20	0	96	68	
Harmony GT XP + 2,4-D ester + Uran	0.6 + 6 + 384	0	96	72	
Harmony GT XP + 2,4-D ester + Uran	0.6 + 4 + 768	0	97	78	
Harmony GT XP + 2,4-D ester + Uran	0.6 + 4 + 1152	5	96	71	
Weedy check		0	0	45	
LSD 0.05			5	8	

^aTreatments applied prior to Feekes 6; NIS, AMS, and Uran denote non-ionic surfactant, ammonium sulfate, and urea ammonium nitrate, respectively.

^bTreatments applied prior to Feekes 9.

^cBased on a visual scale from 0-100, where 0 = no control or crop injury and 100 = dead plants.

^dSSYAL = Jim Hill mustard (tumble mustard).

										Treatment
	Rate	SLSW	MSM	RIR	HCCW	OIW	LPW	POG	FTF ^d	means
Treatments ^a	(oz/ac)				lb/p	lot ——				herbicides
MAT 28	1.0	23.4	58.6	10.5	59.9	108.6	116.6	32.6	74.0	60.5 ^{ab}
MAT 28	2.0	21.5	60.1	11.6	45.5	110.3	116.0	32.8	77.9	71.9ª
MAT 28	4.0	21.7	37.7	10.1	23.9	112.6	105.8	33.5	67.6	51.6 ^b
MAT 28 + Telar	2.0 + 0.5	17.8	60.1	9.4	55.5	100.9	118.6	33.4	74.6	58.8 ^b
MAT 28 + Escort XP	2.0 + 0.33	17.0	59.6	7.0	45.3	98.1	113.2	39.2	78.0	57.2 ^b
MAT 28 ^b	4.0	3.8	10.4	9.9	29.1	51.9	102.4	19.9	49.3	34.6°
Milestone	7.0	22.3	60.9	12.4	55.0	115.0	114.7	34.7	79.5	61.8 ^{ab}
Untreated		22.3	63.2	15.1	69.5	96.0	130.2	33.6	76.2	63.2 ^{ab}
Treatment means grass ^c		31.2°	51.3 ^d	10.7 ^f	47.9 ^d	99.2 ^b	114.7ª	32.4°	72.1°	

Table 15. Yield of Grasses to MAT 28 Alone or in Combination with Other Herbicides on June 9; NMSU Agricultural Science Center at Farmington, NM, 2011

^aTreatments applied with a nonionic surfactant at 22 oz/ac.

^bTreatment applied preemergence on August 28, 2010.

^cMeans followed by the same letter are not significantly different as determined by the LSD test at 0.05.

dSLSW = San Luis slender wheatgrass, MSM = Manchar smoothbrome grass, RIR = Rimrock Indian ricegrass, HCCW = HyCrest crested wheatgrass, OIW = Oahe intermediate wheatgrass, LPW = Luna pubescent wheatgrass, POG = Potomac orchardgrass, and FTF = Fawn tall fescue.

Funds provided by the USDA through the Hatch Program and the State of New Mexico through general appropriations, and various chemical companies.

REFERENCES

- Anonymous. 1986. Crop Protection. Crops and Soils. 38 (7)29-30.
- Chandler, J.M., A.S. Hamill, and A.G. Thomas. 1984. Crop losses due to weeds in Canada and the United States. Weed Sci. Soc. Am., Champaign, IL.
- Lorenzi, H.J. and L.S. Jeffery. 1987. Weeds of the United States and Their Control. Pp.2-21. Van Nostrand Reinhold Co. Inc. New York, NY.
- National Academy of Sciences. 1969. *Insect-pest management and control*. Principles of plant and animal pest control series. Vol. 3.
- Peairs, F.B., L. Brooks, G. Hein, G. Johnson, B. Massey, D. McBride, P. Morrison, J.T. Schultz, and E. Spackman. 1989. *Economic impact of the Russian wheat aphid in the western United States: 1987-1988*. A report by the Russian Wheat Aphid Investigative committee to the Great Plains Agricultural Council (F. Peairs, Chairman, December 1989. Great Plains Agricultural Council Publ. No. 129.

- Richardson, L. 1986. Agrichemical anomie: Why it won't go away, In. Proc. Western Soc. Weed Sci., pp3-4, San Diego, CA. March 18-20, 1986.
- USDA and New Mexico Agricultural Statistics-1998. United States Department of Agriculture and New Mexico Agricultural Statistics Service, Las Cruces, NM.

Richard N. Arnold is a College Professor in the Department of Entomology, Plant Pathology and Weed Science and Superintendent of New Mexico State University's Agricultural Science Center at Farmington. He earned his M.S. from New Mexico State University in 1980. His research interests include weed science and pest control management in crop and non-crop areas.

NOTICE TO USERS OF THIS REPORT

This report has been prepared as an aid to the Agricultural Science Center staff for analyzing the results of various research during the past year and for recording pertinent data for future reference. This is not a formal Agricultural Experiment Station report of research results.

Information in this report represents results from only one year's research. The reader is cautioned against drawing conclusions or making recommendations as a result of data in the report. In many instances, data in this report represent only one of several years of research results that will constitute the final formal report. It should be pointed out, however, that staff members have made every effort to check the accuracy of the data presented.

This report is not intended as a formal release; therefore, none of the data or information herein is authorized for release or publication without the written approval of the New Mexico Agricultural Experiment Station.

Brand names appearing in publications are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. Persons using such products assume responsibility for their use in accordance with current label directions of the manufacturer. Mention of a proprietary pesticide does not imply registration under FIFRA as amended.

Contents of publications may be freely reproduced for educational purposes. All other rights reserved. For permission to use publications for other purposes, contact pubs@nmsu.edu or the authors listed on the publication.

New Mexico State University is an equal opportunity/affirmative action employer and educator. NMSU and the U.S. Department of Agriculture cooperating.